Extensions 1→N→G→Q→1 with N=S3xC42 and Q=C2

Direct product G=NxQ with N=S3xC42 and Q=C2
dρLabelID
S3xC2xC4296S3xC2xC4^2192,1030

Semidirect products G=N:Q with N=S3xC42 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC42):1C2 = S3xC4wrC2φ: C2/C1C2 ⊆ Out S3xC42244(S3xC4^2):1C2192,379
(S3xC42):2C2 = C4xD4:2S3φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):2C2192,1095
(S3xC42):3C2 = C4xS3xD4φ: C2/C1C2 ⊆ Out S3xC4248(S3xC4^2):3C2192,1103
(S3xC42):4C2 = C42.228D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):4C2192,1107
(S3xC42):5C2 = C42.229D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):5C2192,1116
(S3xC42):6C2 = C4xQ8:3S3φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):6C2192,1132
(S3xC42):7C2 = C42.131D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):7C2192,1139
(S3xC42):8C2 = C42.233D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):8C2192,1227
(S3xC42):9C2 = S3xC4.4D4φ: C2/C1C2 ⊆ Out S3xC4248(S3xC4^2):9C2192,1232
(S3xC42):10C2 = C42.234D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):10C2192,1239
(S3xC42):11C2 = C42.237D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):11C2192,1250
(S3xC42):12C2 = S3xC4:1D4φ: C2/C1C2 ⊆ Out S3xC4248(S3xC4^2):12C2192,1273
(S3xC42):13C2 = C42.238D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):13C2192,1275
(S3xC42):14C2 = C42.240D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):14C2192,1284
(S3xC42):15C2 = C4xC4oD12φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):15C2192,1033
(S3xC42):16C2 = S3xC42:C2φ: C2/C1C2 ⊆ Out S3xC4248(S3xC4^2):16C2192,1079
(S3xC42):17C2 = C42.188D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):17C2192,1081
(S3xC42):18C2 = C42.93D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):18C2192,1087
(S3xC42):19C2 = S3xC42:2C2φ: C2/C1C2 ⊆ Out S3xC4248(S3xC4^2):19C2192,1262
(S3xC42):20C2 = C42.189D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2):20C2192,1265

Non-split extensions G=N.Q with N=S3xC42 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC42).1C2 = S3xC4:C8φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).1C2192,391
(S3xC42).2C2 = C42.200D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).2C2192,392
(S3xC42).3C2 = C42.202D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).3C2192,394
(S3xC42).4C2 = C12:M4(2)φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).4C2192,396
(S3xC42).5C2 = C4xS3xQ8φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).5C2192,1130
(S3xC42).6C2 = C42.232D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).6C2192,1137
(S3xC42).7C2 = S3xC42.C2φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).7C2192,1246
(S3xC42).8C2 = C42.236D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).8C2192,1247
(S3xC42).9C2 = S3xC4:Q8φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).9C2192,1282
(S3xC42).10C2 = C42.241D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).10C2192,1287
(S3xC42).11C2 = C42.282D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).11C2192,244
(S3xC42).12C2 = C4xC8:S3φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).12C2192,246
(S3xC42).13C2 = S3xC8:C4φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).13C2192,263
(S3xC42).14C2 = C42.182D6φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).14C2192,264
(S3xC42).15C2 = Dic3:5M4(2)φ: C2/C1C2 ⊆ Out S3xC4296(S3xC4^2).15C2192,266
(S3xC42).16C2 = S3xC4xC8φ: trivial image96(S3xC4^2).16C2192,243

׿
x
:
Z
F
o
wr
Q
<