Extensions 1→N→G→Q→1 with N=S3×C42 and Q=C2

Direct product G=N×Q with N=S3×C42 and Q=C2
dρLabelID
S3×C2×C4296S3xC2xC4^2192,1030

Semidirect products G=N:Q with N=S3×C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C42)⋊1C2 = S3×C4≀C2φ: C2/C1C2 ⊆ Out S3×C42244(S3xC4^2):1C2192,379
(S3×C42)⋊2C2 = C4×D42S3φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):2C2192,1095
(S3×C42)⋊3C2 = C4×S3×D4φ: C2/C1C2 ⊆ Out S3×C4248(S3xC4^2):3C2192,1103
(S3×C42)⋊4C2 = C42.228D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):4C2192,1107
(S3×C42)⋊5C2 = C42.229D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):5C2192,1116
(S3×C42)⋊6C2 = C4×Q83S3φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):6C2192,1132
(S3×C42)⋊7C2 = C42.131D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):7C2192,1139
(S3×C42)⋊8C2 = C42.233D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):8C2192,1227
(S3×C42)⋊9C2 = S3×C4.4D4φ: C2/C1C2 ⊆ Out S3×C4248(S3xC4^2):9C2192,1232
(S3×C42)⋊10C2 = C42.234D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):10C2192,1239
(S3×C42)⋊11C2 = C42.237D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):11C2192,1250
(S3×C42)⋊12C2 = S3×C41D4φ: C2/C1C2 ⊆ Out S3×C4248(S3xC4^2):12C2192,1273
(S3×C42)⋊13C2 = C42.238D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):13C2192,1275
(S3×C42)⋊14C2 = C42.240D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):14C2192,1284
(S3×C42)⋊15C2 = C4×C4○D12φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):15C2192,1033
(S3×C42)⋊16C2 = S3×C42⋊C2φ: C2/C1C2 ⊆ Out S3×C4248(S3xC4^2):16C2192,1079
(S3×C42)⋊17C2 = C42.188D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):17C2192,1081
(S3×C42)⋊18C2 = C42.93D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):18C2192,1087
(S3×C42)⋊19C2 = S3×C422C2φ: C2/C1C2 ⊆ Out S3×C4248(S3xC4^2):19C2192,1262
(S3×C42)⋊20C2 = C42.189D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2):20C2192,1265

Non-split extensions G=N.Q with N=S3×C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C42).1C2 = S3×C4⋊C8φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).1C2192,391
(S3×C42).2C2 = C42.200D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).2C2192,392
(S3×C42).3C2 = C42.202D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).3C2192,394
(S3×C42).4C2 = C12⋊M4(2)φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).4C2192,396
(S3×C42).5C2 = C4×S3×Q8φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).5C2192,1130
(S3×C42).6C2 = C42.232D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).6C2192,1137
(S3×C42).7C2 = S3×C42.C2φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).7C2192,1246
(S3×C42).8C2 = C42.236D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).8C2192,1247
(S3×C42).9C2 = S3×C4⋊Q8φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).9C2192,1282
(S3×C42).10C2 = C42.241D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).10C2192,1287
(S3×C42).11C2 = C42.282D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).11C2192,244
(S3×C42).12C2 = C4×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).12C2192,246
(S3×C42).13C2 = S3×C8⋊C4φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).13C2192,263
(S3×C42).14C2 = C42.182D6φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).14C2192,264
(S3×C42).15C2 = Dic35M4(2)φ: C2/C1C2 ⊆ Out S3×C4296(S3xC4^2).15C2192,266
(S3×C42).16C2 = S3×C4×C8φ: trivial image96(S3xC4^2).16C2192,243

׿
×
𝔽